# Densities and Apparent Molal Volumes of Aqueous $BaCl_2$ Solutions from 15 to 140 °C and from 1 to 200 bar

# Danuta Puchalska<sup>†</sup> and Gordon Atkinson\*

Department of Chemistry, University of Oklahoma, Norman, Oklahoma 73019

The densities of aqueous BaCi<sub>2</sub> solutions have been measured at concentrations from 0.01 to 1.6 *m*, in the temperature range from 15 to 140 °C and the pressure range from 1 to 200 bar. The derived apparent molal volumes have been fitted to the Redlich-Meyer equation to obtain the infinite dilution apparent molal volumes,  $\Phi^{\circ}_{\nu}$ . The effect of temperature and pressure upon  $\Phi^{\circ}_{\nu}$  values has been discussed. The results have been compared with literature data.

Apparent molar volumes obtained from density measurements are one of the oldest and most extensively investigated properties of electrolyte solutions. The data are used to elucidate the nature of solute-solute and solute-solvent interactions, as well as structural changes in the solvent induced by the solute.

Aqueous solutions of alkaline-earth-metal chlorides are important components of natural brines and are widely used in industrial processes. The volume properties of these solutions at high temperatures and pressures are of special interest as they can be used to understand and predict the effects of temperature and pressure on the thermodynamic properties of these solutions. Measurements have been made on CaCl<sub>2</sub>, MgCl<sub>2</sub>, and SrCl<sub>2</sub> solutions but only a few at high temperatures and pressures (1-8).

There are a few experimental measurements on  $BaCl_2$  solutions at low temperature (9-12). At elevated temperatures the only measurements are those of Ellis (2), and at high pressures there are no measurements.

In this paper we report the results of  $BaCl_2$  densities at concentrations from 0.01 *m* to nearly saturation in the temperature range from 15 to 140 °C and the pressure range 1 to 200 bar.

## **Experimental Section**

NaCl and BaCl<sub>2</sub> were Fisher Scientific ACS certified. All solutions were prepared by weight dilution of stock solutions using water which was first distilled, then passed through a Barnstead 18.5 Mohm ion-exchange apparatus, and subsequently filtered with a 10-µm glass filter until its conductivity was less than 0.05  $\mu$ S cm<sup>-1</sup>. The stock solution concentrations were determined to within  $\pm 0.03\%$  by gravimetric analysis of chloride. The solution densities within the temperature range 15-55 °C were measured by a vibrating-tube densimeter (Mettler/Paar DMA 60 and DMA 602 remote glass cell). The densimeter constants were determined for each temperature by calibration with NaCl solutions of known concentrations using the density data of Millero et al. (13, 14). The temperature was measured with a Leeds and Northrup platinium resistance thermometer (NBS calibrated) and a Müller bridge connected to a Leeds and Northrup dc null detector (Model 9828), yielding an accuracy of 0.001 °C. The experimental temperatures were controlled to ±0.005 °C with a Neslab EX-100 bath in conjunction with a Lauda K4/R thermostat. The relative densities were measured with a precision of  $\pm 5$  ppm.

<sup>†</sup>On sabbatical leave from the Department of Physical Chemistry, Technical University of Gdansk, 80-952 Gdansk, Poland.

A vibrating-tube densimeter (DMA 512 remote stainless steel cell) was used to measure the densities at temperatures above 55 °C and at higher pressures. The 512 cell was operated in a flow mode. A HPLC injection valve (Rheodyne 7010) was used to introduce a 6-cm<sup>3</sup> sample solution into the inlet stream after which a water base line was reestablished. The pressure was maintained with a Circle Seal back-pressure regulator and measured with an in-line Heise gauge to a precision of ±1 bar.

The temperature inside the cell was determined with a platinium resistance thermometer in the same way as in the lowtemperature measurements. The cell temperature was maintained constant to ±0.005 °C in the temperature range 80-120 °C and to ±0.01 °C at 140 °C by a thermostating system which was designed and constructed by our Analytical Service Department. The design was based on the maximum minimization of heat losses. The heating system consists of two thermostats. One less precise (within ±0.05 °C) was used to bring the liquid in the main bath to the approximate temperature. Then, with the aid of 10 heaters of different powers placed on the surface of the main bath, the final temperature was tuned. The surface heaters were covered with a 4-in. layer of insulation and protected from the surroundings by a thermal barrier consisting of additional heaters and insulation. The control of all heaters was by Sargent-Welch temperature controllers.

The calibration procedure of the DMA 512 cell was similar to the procedure described for the DMA 602 cell. Water densities at experimental temperatures and pressures were calculated from the Haar et al. equation of state (15). The NaCI densities were calculated with Pitzer equations from his comprehensive review of NaCI solution properties at high temperatures and pressures (16).

Since the influence of pressure in the investigated pressure range on the calibration constants of the instrument was negligible (the random scatter was within  $\pm 0.2-0.5\%$ ), it was assumed that the values were a function of the temperature only. The relative densities at high temperatures and pressures were measured with lower precision than at low temperatures, in the range of 8-10 ppm.

## **Results and Discussion**

Calculated densities were used to determine the apparent molal volumes,  $\Phi_{\rm v},$  from

$$\Phi_{v} = (M_{2}/d) - 1000(d - d_{0})/mdd_{0}$$
(1)

where  $M_2$  is the solute molecular weight, d is the solution density,  $d_0$  is the density of pure water, and m is the molality. The results are listed in Table I. The extrapolation of the apparent molal volumes to infinite dilution has been made with the Redlich-Meyer equation (17). It has been shown that the dilute apparent molal volume data for strong electrolytes can be accurately described by the Redlich-Meyer equation (18-20)

$$\Phi_{\nu} = \Phi^{\circ}_{\nu} + S_{\nu}m^{1/2} + b_{\nu}m \tag{2}$$

where  $\Phi^{\circ}_{\nu}$  is the value of  $\Phi_{\nu}$  at infinite dilution,  $S_{\nu}$  is the theoretical Debye–Hückel slope listed in Table II, and  $b_{\nu}$  is a solute-specific empirical parameter. The theoretical Debye– Hückel slopes have been calculated by Atkinson (21) for temperatures less than 100 °C and by Pitzer (22) for temperatures



**Figure 1.** Apparent molal volumes of BaCl<sub>2</sub> in water solutions at 25 °C and at 0.987 bar: **•**, present work; **□**, Millero (11);  $\Delta$ , Perron (10); **\***, Dunn (9). The solid curve is the Redlich-Mayer equation fit.



**Figure 2.** Apparent molal volumes of  $BaCl_2$  in water solutions at 100 °C and 20 bar: **II**, present work; O, Ellis (2). The solid curve is the Redlich-Mayer equation fit.

exceeding 100 °C. The values of  $\Phi^{\circ}_{\nu}$ ,  $b_{\nu}$ , and  $\sigma$  determined by a weighted fit of eq 2 are listed in Table III. Weighting was proportional to  $1/\sigma$  where  $\sigma$  is the estimated error in  $\Phi_{\nu}$ . Figure 1 shows a sample extrapolation curve at 25 °C with  $\sigma$  indicated by error bars.

Results of our data can be compared with the results of other investigators at 25 °C, the most extensively studied temperature. The agreement with the reliable literature values would at least serve as a check of the purity of our components and proper measuring procedure. The data of Dunn (9), Perron (10), and Millero (11) are marked in Figure 1. As is seen, the agreement is quite satisfactory at higher concentrations, but at high dilutions our data are somewhat lower, which is reflected in  $\Phi^{\circ}_{\nu}$  values equal to 22.53, 22.98, 23.21, and 23.24 cm<sup>3</sup> mol<sup>-1</sup> obtained from our results, Perron, Millero, and Dunn, respectively.

It is difficult to compare our high-temperature, high-pressure results with those in the literature because the only existing results at high temperatures and a pressure of 20 bar are those of Ellis (2). At higher pressures, data are lacking. In Figure 2 the comparison of our results and those of Ellis at 100 °C and 20 bar is shown. There is a significant discrepancy in the dilute region that is reflected in  $\Phi^{\circ}_{\nu}$  values (19.3 and 23.9 cm<sup>3</sup> mol<sup>-1</sup> from this work and Ellis's work, respectively). Ellis obtained his  $\Phi^{\circ}_{\nu}$  values, applying a straight-line extrapolation making use of only four data points, as is seen in Figure 2, which may explain



Figure 3. Temperature dependence of  $\Phi^{\circ}_{\nu}$  for BaCl<sub>2</sub> in water solution.



Figure 4. Effect of pressure on the  $\Phi^{\circ}$ , values for BaCl<sub>2</sub> in water solutions: **II**, 80 °C; O, 100 °C; **X**, 120 °C; X, 140 °C.

the observed differences. The discrepancy between the Ellis and Dunn data at low temperature is also very significant. Dunn's  $\Phi^{\circ}_{\nu}$  values are 24.25 and 24.31 cm<sup>3</sup> mol<sup>-1</sup> for the temperatures 45 and 55 °C, respectively. Ellis's  $\Phi^{\circ}_{\nu}$  value at 50 °C is 28.8 cm<sup>3</sup> mol<sup>-1</sup>.

The hydration properties of the ions in BaCl<sub>2</sub> solutions can be estimated by examining the temperature and pressure dependence of the  $\Phi^{\circ}_{\nu}$  values. The dependence of the  $\Phi^{\circ}_{\nu}$  of BaCl<sub>2</sub> upon temperature follows the trend established in previous work for strong electrolytes (*19, 20, 23*). Figure 3 shows the plot of the volume-temperature curve. The  $\Phi^{\circ}_{\nu}$  values at the temperature range 80–140 °C were extrapolated to the pressure of 1 atm by using the straight-line dependencies of  $\Phi^{\circ}_{\nu}$  upon pressure for each measured temperature (Figure 4). The volume-temperature curve can be represent by the second-degree polynomial

$$\Phi^{\circ}_{\nu} = a + bt + ct^2 \tag{3}$$

where *a*, *b*, and *c* are empirical parameters and are 19.02 cm<sup>3</sup> mol<sup>-1</sup>, 0.174 cm<sup>3</sup> mol<sup>-1</sup> °C<sup>-1</sup>, and -0.0017 cm<sup>3</sup> mol<sup>-1</sup> °C<sup>-2</sup>, respectively. The temperature at which the maximum of the apparent molal volume occurs,  $t_{max}$ , was estimated to be 51.4 °C and was found by differentiating eq 3 with respect to *t* and setting the result equal to zero.

The ionic volume,  $\Phi^{\circ}_{\nu}$  consists of four contributions

$$\Phi^{o}_{v} = \Phi^{o}_{cryst} + \Phi^{o}_{c} + \Phi^{o}_{eie} + \Phi^{o}_{r}$$
(4)

where  $\Phi^{\circ}_{crvst}$  is crystallographic volume,  $\Phi^{\circ}_{c}$  is a cavity volume

Table I. Relative Densities and Apparent Molal Volumes of Aqueous BaCl<sub>2</sub> Solutions at Temperatures from 15 to 140 °C and Pressures from 1 to 200 bar

| m/        | $\frac{10^{3}(d-d_{0})}{(a \ cm^{-3})}$ | $\frac{\Phi_v}{(am^3 mol^{-1})}$ | $\frac{10^{3}(d-d_{0})}{(a \ cm^{-3})}$ | $\Phi_v/$   | m/ (mol kg <sup>-1</sup> ) | $\frac{10^{3}(d-d_{0})}{(q \text{ cm}^{-3})}$ | $\Phi_v/$          | $\frac{10^{3}(d-d_{0})}{(g \text{ cm}^{-3})}$ | $\Phi_v/$         |
|-----------|-----------------------------------------|----------------------------------|-----------------------------------------|-------------|----------------------------|-----------------------------------------------|--------------------|-----------------------------------------------|-------------------|
| (ЩОГ КВ ) | (g cm )                                 | 0 987 her                        | 25 °C en                                | d 0 987 her | (1101 11g /                | 100 °C and                                    | 1 200 har          | 120 °C ar                                     | d 20 bar          |
|           |                                         | V.901 DAL                        |                                         | U V.301 DEL |                            |                                               |                    |                                               |                   |
| 0.0093    | 1.742                                   | 21.59                            | 1.722                                   | 23.39       | 0.0201                     | 3.598                                         | 24.25              | -                                             | -                 |
| 0.0295    | 5.463                                   | 22.51                            | 5.405                                   | 24.14       | 0.0204                     | -                                             | -                  | 3.617                                         | 19.52             |
| 0.0501    | 9.257                                   | 23.11                            | 9.149                                   | 24.65       | 0.0304                     | 5.412                                         | 24.89              | 5.421                                         | 20.38             |
| 0.0726    | 13.370                                  | 23.55                            | 13.216                                  | 25.13       | 0.0503                     | 8.908                                         | 25.63              | 8.900                                         | 21.69             |
| 0.0998    | 18.354                                  | 23.79                            | 18.154                                  | 25.44       | 0.0727                     | 12.452                                        | 26.45              | 12.842                                        | 22.16             |
| 0.1494    | 27.355                                  | 24.34                            | 27.081                                  | 25.82       | 0.1000                     | 17.586                                        | 26.80              | 17.554                                        | 23.12             |
| 0.2000    | 36 503                                  | 94 71                            | 36 100                                  | 26 37       | 0 1506                     | 26 343                                        | 27.57              | 26 267                                        | 24 16             |
| 0.2000    | 50.000                                  | 05 49                            | 52 894                                  | 07 10       | 0.1000                     | 24 799                                        | 07.99              | 34 606                                        | 24.70             |
| 0.3004    | 04.400                                  | 20.40                            | 00.004                                  | 21.12       | 0.1994                     | 50 517                                        | 21.00              | 50.015                                        | 24.70             |
| 0.4064    | 73.250                                  | 25.96                            | 72.453                                  | 27.52       | 0.2917                     | 50.517                                        | 28.72              | 00.215                                        | 20.04             |
| 0.5878    | 104.800                                 | 26.98                            | 103.667                                 | 28.48       | 0.4015                     | 69.036                                        | 29.41              | -                                             |                   |
| 0.7877    | -                                       | -                                | 137.521                                 | 29.20       | 0.5873                     | -                                             | -                  | 99.356                                        | 27.83             |
| 0.9921    | 173.236                                 | 28.54                            | 171.363                                 | 29.95       | 0.5957                     | 101.105                                       | 30.69              |                                               |                   |
| 1.2243    | 211.135                                 | 29.44                            | 209.035                                 | 30.67       | 0.7912                     | -                                             | -                  | 132.391                                       | 28.79             |
| 1.5858    | 268,433                                 | 30.62                            | 265,694                                 | 31.83       | 0.7962                     | 134.061                                       | 31.04              | -                                             | -                 |
| 1.0000    | 200.100                                 |                                  |                                         |             | 0.9881                     | 164,519                                       | 31.92              | 163.477                                       | 29.77             |
|           | 35 °C and                               | 0.987 bar                        | 45 °C and                               | l 0.987 bar | 1 9467                     | 204 765                                       | 30.80              | 203 456                                       | 30.82             |
| 0.0093    | 1 712                                   | 24.00                            | -                                       | -           | 1.2407                     | 204.100                                       | 02.02              | 200.400                                       | 00.02             |
| 0.0000    | 5 367                                   | 24.08                            | 5 339                                   | 25.31       |                            | 120 °C ar                                     | id 100 bar         | 120 °C an                                     | d 200 bar         |
| 0.0230    | 0.001                                   | 05 40                            | 0.005                                   | 20.01       | 0.0901                     | 9 500                                         | 91.94              | -                                             | -                 |
| 0.0501    | 9.009                                   | 20.40                            | 9.007                                   | 20.09       | 0.0201                     | 5.050                                         | 21.24              | E ( 10                                        | 01.00             |
| 0.0726    | 13.135                                  | 25.97                            | 13.058                                  | 26.43       | 0.0304                     | 5.385                                         | 22.42              | 5.442                                         | 21.23             |
| 0.1494    | 26.862                                  | 26.81                            | 26.319                                  | 27.32       | 0.0503                     | 8.883                                         | 22.77              | 8.914                                         | 22.97             |
| 0.2000    | 35.837                                  | 27.28                            | 35.604                                  | 27.78       | 0.0727                     | 12.771                                        | 23. <del>9</del> 6 | 12.830                                        | 23.91             |
| 0.3004    | 53.427                                  | 27.99                            | 52.989                                  | 28.85       | 0.1000                     | 17.493                                        | 24.49              | -                                             | -                 |
| 0.4064    | 71.821                                  | 28.57                            | 71.268                                  | 29.34       | 0.1506                     | 26.171                                        | 25.54              | 26.197                                        | 26.17             |
| 0.5979    | 102 003                                 | 20.01                            | 101 030                                 | 30.30       | 0 1994                     | 34 399                                        | 26.69              | 34 521                                        | 26.83             |
| 0.0070    | 102.503                                 | 29.20                            | 101.505                                 | 00.00       | 0.1554                     | 50 149                                        | 20.03              | 50 100                                        | 20.00             |
| 0.7873    | 136.351                                 | 30.09                            | 134.923                                 | 31.33       | 0.2917                     | 00.143                                        | 20.90              | 50.120                                        | 27.82             |
| 0.9921    | 170.068                                 | 30.74                            | 168.410                                 | 31.76       | 0.3961                     |                                               |                    | 67.609                                        | 28.50             |
| 1.2243    | 207.239                                 | 31.59                            | 205.245                                 | 32.57       | 0.5873                     | 99.413                                        | 28.33              | 98.949                                        | 29.86             |
| 1.5858    | 263.758                                 | 32.53                            | 260.943                                 | 33.62       | 0.7912                     | 132.343                                       | 29.42              | 131.805                                       | 30.7 <del>9</del> |
|           |                                         |                                  |                                         | 1 60 1      | 0.9881                     | 163.418                                       | 30.38              | -                                             | -                 |
|           | 55 °C and                               | 1 <b>0.9</b> 87 Dar              | 80 °C ai                                | ng zu dar   | 0.9962                     | -                                             | -                  | 163.997                                       | 31.74             |
| 0.0093    | -                                       | -                                | 1.682                                   | 23.82       | 1 2339                     | 201 291                                       | 31 45              | 200.967                                       | 32.32             |
| 0.0201    | 3.636                                   | 25.33                            | -                                       | -           | 1.2000                     | 201.201                                       | 01.40              | 200.001                                       | 02.02             |
| 0.0295    | _                                       | -                                | 5 272                                   | 24 78       |                            | 140 °C an                                     | ld 20 bar          | 140 °C at                                     | nd 100 bar        |
| 0.0501    | -                                       | _                                | 8 948                                   | 25.07       | 0.0295                     | -                                             | -                  | 5 345                                         | 14 332            |
| 0.0001    | 0.021                                   | 00.07                            | 0.040                                   | 20.01       | 0.0200                     | 5 460                                         | 15 45              | -                                             | -                 |
| 0.0003    | 5.031                                   | 20.07                            | 10.000                                  | 05.00       | 0.0304                     | 0.400                                         | 10.40              | -                                             | -                 |
| 0.0727    | 13.033                                  | 26.48                            | 12.899                                  | 25.66       | 0.0501                     | 8.940                                         | 10.08              |                                               |                   |
| 0.1000    | -                                       | -                                | 17.721                                  | 26.24       | 0.0503                     |                                               |                    | 9.040                                         | 16.07             |
| 0.1494    | -                                       | -                                | 26.356                                  | 26.90       | 0.0727                     | 12.898                                        | 18.03              | 12.993                                        | 17.40             |
| 0.1506    | 26.791                                  | 27.38                            | -                                       | -           | 0.1000                     | 17.640                                        | 18.94              | 17.772                                        | 18.27             |
| 0.2000    | 35.392                                  | 28.15                            | 35.127                                  | 27.48       | 0.1494                     | 26.218                                        | 19.88              | -                                             | -                 |
| 0.3004    | 52 778                                  | 28.88                            | 52 378                                  | 28.26       | 0 1506                     | _                                             | _                  | 26.517                                        | 19.97             |
| 0.4064    | 71.094                                  | 20.00                            | 70 308                                  | 20.20       | 0.1004                     | 34 736                                        | 91.10              |                                               |                   |
| 0.5070    | 11.024                                  | 25.20                            | 100.000                                 | 20.12       | 0.1334                     |                                               | 21.10              | 25 000                                        | 90.09             |
| 0.0070    | -                                       |                                  | 100.035                                 | 30.02       | 0.2000                     | F1 005                                        | 00.10              | 30.029                                        | 20.82             |
| 0.7877    | 134.598                                 | 31.14                            | 133.206                                 | 31.08       | 0.3004                     | 51.967                                        | 22.10              | 52.043                                        | 22.09             |
| 0.9921    | 168.049                                 | 31.54                            | 166.139                                 | 31.67       | 0.4015                     | 68.846                                        | 23.35              | 68.630                                        | 24.67             |
| 1.2243    | 204.651                                 | 32.48                            | ~                                       | -           | 0.5878                     | 99.849                                        | 24.35              | 99.826                                        | 25.10             |
| 1.5858    | 260.166                                 | 33.55                            | 257.413                                 | 33.62       | 0.7877                     | 132.055                                       | 25.87              | -                                             | -                 |
|           | 00.0C                                   | 1 100 hom                        | 80.90                                   | 4 900 Las   | 0.7962                     | -                                             | _                  | 132.924                                       | 27.22             |
|           | au "C and                               | a luo dar                        | 80 °C an                                | d zuu dar   | 0.9921                     | 165 020                                       | 26.38              | 163,307                                       | 28.76             |
| 0.0093    | 1.681                                   | 24.39                            | 1.678                                   | 25.58       | 1 9949                     | 200.225                                       | 20.00              | 100.660                                       | 20.28             |
| 0.0295    | 5.273                                   | 25.34                            | 5.255                                   | 26.67       | 1 5050                     | 200.220                                       | 20.20              | 133.003                                       | 20.20             |
| 0.0501    | 8 950                                   | 25.63                            | 8 914                                   | 27.04       | 1.9099                     | 204.103                                       | 29.93              |                                               |                   |
| 0.0796    | 19 011                                  | 26.00                            | 19 967                                  | 27.50       |                            | 140 °C et                                     | nd 200 har         |                                               |                   |
| 0.0720    | 12.711                                  | 20.20                            | 17.001                                  | 21.00       | 0.0004                     | 2 EOF                                         | 10.01              |                                               |                   |
| 0.1000    | 17.714                                  | 20.88                            | 11.090                                  | 27.81       | 0.0304                     | 0.080                                         | 12.81              |                                               |                   |
| 0.1494    | 26.322                                  | 27.70                            | 26.300                                  | 28.51       | 0.0501                     | 9.106                                         | 15.60              |                                               |                   |
| 0.2000    | 35.094                                  | 28.20                            | 35.066                                  | 29.01       | 0.0727                     | 13.006                                        | 18.21              |                                               |                   |
| 0.3004    | 52.348                                  | 28.90                            | 52.258                                  | 29.87       | 0.1000                     | 17.750                                        | 19.53              |                                               |                   |
| 0.4064    | 70.328                                  | 29.59                            | 70.243                                  | 30.42       | 0.1506                     | 26.470                                        | 21.29              |                                               |                   |
| 0.5878    | 100.669                                 | 30.45                            | 100.468                                 | 31.38       | 0.1994                     | 34 773                                        | 22.63              |                                               |                   |
| 0 7877    | 133 330                                 | 91.40                            | 133 137                                 | 32.20       | 0 2017                     | 50 284                                        | 24.49              |                                               |                   |
| 0.1011    | 100.000                                 | 01.97                            | 100.101                                 | 02.20       | 0.2017                     | 00.201                                        | 27.7J              |                                               |                   |
| 0.9921    | 100.399                                 | 31.67                            | 100.233                                 | 32.37       | 0.4015                     | 00.001                                        | 20.73              |                                               |                   |
| 1.2243    | 202.617                                 | 32.83                            | 202.421                                 | 33.49       | 0.5957                     | 100.188                                       | 27.62              |                                               |                   |
| 1.5858    | 257.555                                 | 33.93                            | 257.229                                 | 34.58       | 0.7962                     | 132.459                                       | 28.61              |                                               |                   |
|           | 100 የሮ -                                | nd 20 her                        | 100 00                                  | nd 100 haw  | 0.9881                     | 162.490                                       | 29.69              |                                               |                   |
|           | 100 0 8                                 | AN AV DEL                        | 100 -0 8                                |             | 1.2243                     | 199.462                                       | 30.16              |                                               |                   |
| 0.0201    | -                                       | -                                | 3.616                                   | 22.52       |                            |                                               |                    |                                               |                   |
| 0.0304    | 5.438                                   | 22.55                            | 5.434                                   | 23.34       |                            |                                               |                    |                                               |                   |
| 0.0503    | 8.923                                   | 23. <del>9</del> 2               | 8.943                                   | 24.12       |                            |                                               |                    |                                               |                   |
| 0.0727    | 12.870                                  | 24.46                            | 12.872                                  | 25.06       |                            |                                               |                    |                                               |                   |
| 0.1000    | 17.606                                  | 25.22                            | 17.609                                  | 25.81       |                            |                                               |                    |                                               |                   |
| 0 1506    | 26 406                                  | 25 79                            | 26 372                                  | 26 63       |                            |                                               |                    |                                               |                   |
| A 1004    | 24 750                                  | 20.10                            | 24 700                                  | 97 04       |                            |                                               |                    |                                               |                   |
| 0.1334    | 01.100                                  | 20.04                            | 04.174                                  | 21.00       |                            |                                               |                    |                                               |                   |
| 0.2917    | 00.070                                  | 27.25                            | 50.541                                  | 27.94       |                            |                                               |                    |                                               |                   |
| 0.4015    | 69.013                                  | 28.23                            | 68.958                                  | 28.93       |                            |                                               |                    |                                               |                   |
| 0.5957    | 101.385                                 | 29.05                            | 101.271                                 | 29.78       |                            |                                               |                    |                                               |                   |
| 0.7962    | 134.038                                 | 29.94                            | 134.106                                 | 30.37       |                            |                                               |                    |                                               |                   |
| 0.9881    | 164.643                                 | 30.88                            | 164.823                                 | 31.04       |                            |                                               |                    |                                               |                   |
| 1,2467    | 205.286                                 | 31.41                            | 205 190                                 | 31.95       |                            |                                               |                    |                                               |                   |
|           |                                         | 01.11                            | 200.100                                 | 01.00       |                            |                                               |                    |                                               |                   |

within a solvent which can partially accommodate an ion. Its contribution to the overall ionic volume is negative.  $\Phi^{\circ}_{ee}$  is the electrostriction volume, resulting from electrostatic compression of the solvent, and its negative contribution depends upon the

ionic charge density.  $\Phi^{\rm o}{}_{\rm r}$  is the solvent response term closely related to the secondary hydration effect.

The shape of the volume-temperature curve and  $t_{\rm max}$  are dependent upon whether the electrostriction or positive volume

Table II. Debye-Hückel Slopes,  $S_{ij}$  (cm<sup>3</sup> kg<sup>1/2</sup> mol<sup>-3/2</sup>), for 2:1 Electrolytes at Various Pressures (bar) and Temperatures (°C)

|      | S <sub>v</sub> |        |         |         |  |  |  |
|------|----------------|--------|---------|---------|--|--|--|
| T/°C | 0.987 bar      | 20 bar | 100 bar | 200 bar |  |  |  |
| 15   | 8.818          |        |         |         |  |  |  |
| 25   | 9.706          |        |         |         |  |  |  |
| 35   | 10.631         |        |         |         |  |  |  |
| 45   | 11.608         |        |         |         |  |  |  |
| 55   | 12.653         |        |         |         |  |  |  |
| 80   |                | 16.967 | 16.509  | 15.653  |  |  |  |
| 100  |                | 21.347 | 20.694  | 19.917  |  |  |  |
| 120  |                | 27.114 | 26.204  | 25.123  |  |  |  |
| 140  |                | 35.025 | 33.706  | 32.110  |  |  |  |

**Table III.** Parameters for Equation 2 at Temperatures from 15 to 140 °C and Pressures from 1 to 200 bar

|       |      | Φ°,/                                 | $b_v/$               | σ/                                   |
|-------|------|--------------------------------------|----------------------|--------------------------------------|
| P/bar | t/°C | (cm <sup>3</sup> mol <sup>-1</sup> ) | $(cm^3 kg mol^{-1})$ | (cm <sup>3</sup> mol <sup>-1</sup> ) |
| 0.987 | 15   | 21.06                                | -1.37                | 0.06                                 |
| 0.987 | 25   | 22.53                                | -2.42                | 0.05                                 |
| 0.987 | 35   | 23.16                                | -3.18                | 0.05                                 |
| 0.987 | 45   | 23.43                                | -3.26                | 0.07                                 |
| 0.987 | 55   | 23.37                                | -4.54                | 0.09                                 |
| 20    | 80   | 21.97                                | -9.64                | 0.11                                 |
| 20    | 100  | 19.33                                | -11.04               | 0.13                                 |
| 20    | 120  | 15.94                                | -14.70               | 0.12                                 |
| 20    | 140  | 9.60                                 | -19.88               | 0.25                                 |
| 100   | 80   | 22.47                                | -7.74                | 0.11                                 |
| 100   | 100  | 19.93                                | -9.92                | 0.10                                 |
| 100   | 120  | 17.84                                | -15.47               | 0.16                                 |
| 100   | 140  | 9.16                                 | -15.64               | 0.18                                 |
| 200   | 80   | 23.82                                | -7.51                | 0.13                                 |
| 200   | 100  | 21.53                                | -10.74               | 0.14                                 |
| 200   | 120  | 17.81                                | -12.04               | 0.17                                 |
| 200   | 140  | 9.80                                 | -11.54               | 0.49                                 |

contribution dominates. The curved section before  $t_{max}$  is dominated by the positive volume contribution and beyond  $t_{max}$ by the electrostriction. In the series of alkaline-earth cations, barium is the largest and, hence, has the smallest charge density, resulting in the lowest electrostriction volume contribution in comparison with the other alkaline-earth cations. The values of tmax for MgCl2, CaCl2, SrCl2, and BaCl2 were calculated from Ellis's results over the temperature range from 25 to 200 °C and pressures to 20 bar and are equal to 44.6, 46.8, 56.5, and 58.7 °C for magnesium, calcium, strontium, and barlum chlorides, respectively. The observed temperature trend is in good agreement with the ionic hydration concept. The discrepancy between our and Ellis's tmax values for BaCl<sub>2</sub> might be explained in terms of the different extrapolation procedures applied for the evaluation of  $\Phi^{\circ}_{\nu}$  values. The effect of pressure on  $\Phi^{\circ}_{\nu}$  in the temperature range

80-140 °C is shown in Figure 4. The  $\Phi^{\circ}_{\nu}$  values at 80 and 100 °C increase with pressure in a nearly linear way. At higher temperatures the pressure has little effect on the  $\Phi^{\circ}$ , values. At 120 °C there is a small increase up to 100 bar, and at 140

# °C the values of $\Phi^{\circ}_{\nu}$ are independent of pressure.

It is well-known that pressure and temperature act as opposing forces on the cavity volume contribution. The solvent structure becomes more open with increasing temperature, making the cavity volume more negative. In contrast, increasing the pressure reduces the void space in the solvent. reducing the cavity volume. The small change of the  $\Phi^{\circ}$ values with pressure at higher temperatures can be explained in terms of the near equality of the opposing effects of temperature and pressure.

The electrostriction volume is considered to be only a function of temperature, and its negative contribution should be taken into account when the effect of pressure at elevated temperatures is considered.

We could not compare our high-pressure, high-temperature BaClo results with other alkaline-earth-metal chlorides because of lack of literature data. There are either high-temperature data at constant low pressure (2, 7, 4) or high-pressure data at low temperature up to 50 °C (3, 8).

## Acknowledament

We are indebted to Allen Rees and John Black for designing and constructing the thermostating system for the high-temperature measurements.

Registry No. BaCl<sub>2</sub>, 10361-37-2.

#### **Literature Cited**

- (1) Perman, E. P.; Urry, W. D. Proc. R. Soc. (London) 1985, A126, 44.
- (2)
- Ellis, A. J. J. Chem. Soc. A 1987, 660. Chen, C.-T.; Emmet, R. T.; Millero, F. J. J. Chem. Eng. Data 1977, (3) 22. 201.
- Gates, J. A.; Wood, R. H. J. Chem. Eng. Data 1985, 30, 44. Kumar, A. J. Chem. Eng. Data 1988, 31, 347. Kumar, A. J. Solution Chem. 1988, 15, 409. (4)
- (5)
- (6)

- (7) Saluja, P. P. S.; Le Blanc, J. C. J. Chem. Eng. Data 1987, 32, 72.
  (8) Gates, J. A.; Wood, R. H. J. Chem. Eng. Data 1989, 34, 53.
  (9) Dunn, L. A. Trans. Faraday Soc. 1966, 62, 2348; 1988, 64, 2951.
  (10) Perron, G.; Desnoyers, J. E.; Millero, F. J. Can. J. Chem. 1974, 52, 3738.
- (11) Millero, F. J.; Ward, G. K.; Chetirkin, P. V. J. Acoust. Soc. Am. 1977, 61. 1492.
- Isono, T. J. Chem. Eng. Data 1984, 29, 45. (12)
- (13) Lo Surdo, A.; Alzola, E. M.; Millero, F. J. J. Chem. Thermodyn. 1982, 14.209
- (14) Connaughton, L. M.; Hershey, J. P.; Millero, F. J. J. Solution Chem. 1936, *15*, 989. (15) Haar, L.; Gallagher, J.; Kell, G. S. *NBS/NRC Steam Tables*; Hemi-
- sphere: Washington, DC, 1984. Rogers, P. S.; Pitzer, K. S. J. Phys. Chem. Ref. Data 1982, 11, 15.
- (17) (a) Redlich, O.; Meyer, D. M. Chem. Rev. 1964, 64, 221. (b) Redlich,
- O. J. Phys. Chem. 1963, 67, 496. (18) Millero, F. J. Water and Aqueous Solutions; Structure and Thermodynamics and Transport Processes; Wiley Interscience: New York, 1972.

- (19) Pogue, R. F.; Atkinson, G. J. Chem. Eng. Data 1989, 34, 227.
   (20) Pogue, F. R.; Atkinson, G. J. Solution Chem. 1989, 18, 249.
   (21) Atkinson, G.; Ananthaswamy, J. J. Chem. Eng. Data 1984, 29, 81.
   (22) Pitzer, K. S.; Bradiey, D. J. J. Phys. Chem. 1979, 63, 1599.
   (23) Pogue, R. F.; Atkinson, G. Int. J. Thermophys. 1986, 9, 689.

Received for review April 1, 1991. Accepted July 8, 1991. This research was supported by a consortium of companies through the COSPP Program.